Performance of Principal Component Analysis and Orthogonal Least Square on Optimized Feature Set in Classifying Asphyxiated Infant Cry Using Support Vector Machine
نویسندگان
چکیده
Received Aug 26, 2017 Revised Nov 2, 2017 Accepted Nov 20, 2017 An investigation into optimized support vector machine (SVM) integrated with principal component analysis (PCA) and orthogonal least square (OLS) in classifying asphyxiated infant cry was performed in this study. Three approaches were used in the classification; SVM, PCA-SVM, and OLSSVM. Various numbers of features extracted from Mel-frequency Cepstral coefficient (MFCC) were tested to obtain the optimal parameters of SVM kernels. Once the optimal feature set is obtained, PCA and OLS selected the most significant features and the optimized SVM then classified the selected cry patterns. In PCA-SVM, eigenvalue-one-criterion (EOC), cumulative percentage variance (CPV) and the Scree test (SCREE) were used to select the most significant features. SVM with radial basis function (RBF) kernel was chosen in the classification stage. The classification accuracy and computation time were computed to evaluate the performance of each method. The best method for classifying asphyxiated infant cry is PCA-SVM with EOC since it produces the highest classification accuracy which is 94.84%. Using PCA-SVM, the classification process was performed in 1.98s only. The results also show that employing feature selection techniques could enhance the classifier performance.
منابع مشابه
Common Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کاملOptimal Feature Selection Technique for Mel Frequency Cepstral Coefficient Feature Extraction in Classifying Infant Cry with Asphyxia
Mel Frequency Cepstral Coefficient is an efficient feature representation method for extracting human-audible audio signals. However, its representation of features is large and redundant. Therefore, feature selection is required to select the optimal subset of Mel Frequency Cepstral Coefficient features. The performance of two types of feature selection techniques; Orthogonal Least Squares and...
متن کاملLeast-squares support vector machine and its application in the simultaneous quantitative spectrophotometric determination of pharmaceutical ternary mixture
This paper proposes the least-squares support vector machine (LS-SVM) as an intelligent method applied on absorption spectra for the simultaneous determination of paracetamol (PCT), caffeine (CAF) and ibuprofen (IB) in Novafen. The signal to noise ratio (S/N) increased. Also, In the LS - SVM model, Kernel parameter (σ2) and capacity factor (C) were optimized. Excellent prediction was shown usin...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017